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I. INTRODUCTION 

 
The problem of how to act while learning is a class of 
optimal control problems with a long history [1][4][7]. In 
reinforcement learning (RL) it has taken the form of 
problems of (i) how to act so as to maximise performance 
during the learning agent’s lifetime [9][11]; and (ii) how 
to act so as to identify a near optimal policy rapidly, or 
while accumulating acceptable costs [3][5][6][10]. These 
problems, while related, are not the same [16]. 
In Markov Decision Processes (MDPs) the optimal 
Bayesian solution to problem (i) is well known, but 
intractable [1][11]. Numerous approximations have been 
proposed. In this paper a new heuristic method is 
presented which brings together ideas from several recent 
approaches [9][10][15]. The algorithm derived is shown 
to outperform existing model-based techniques with 
respect to both problems (i) and (ii). The domain is a 
finite state MDP with an unknown transition function and 
a known reward function. All the methods considered in 
this paper are model-based. The paper is structured as 
follows. In Section II we describe the optimal solution as 
specified within a Bayesian framework, as originally 
outlined by [1][11], and recent heuristic approaches based 
on interval estimation (IE) . In Section III we describe the 
new algorithm which extends Wiering’s [15] model based 
interval estimation (MBIE) method using a Dirichlet 
density. In Section IV we present the results of an 
empirical study, and show that the new algorithm 
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outperforms both Wiering’s and Meuleau’s [12] 
exploration methods on a stochastic maze task. 
 

II. PREVIOUS WORK 

We can distinguish four components of an exploration 
method: the measure of ORFDO exploratory value employed 
(e.g. reward based, counter based, error based, recency 
based, variance based); whether this measure is converted 
into a GLVWDO measure of exploratory value using a Bellman 
equation; whether the method for inferring the exploration 
value function is PRGHO�EDVHG or PRGHO�IUHH; and what 
form the GHFLVLRQ� UXOH based on the exploration value 
function takes (eg ε -greedy, Boltzmann). All the 
methods considered here are model-based, and greedy (ie 
they always choose the best action according to the 
exploration value function). We first outline the optimal 
Bayesian specification of and solution to problem (i), for 
the case of an unknown MDP. All other exploration 
measures for problem (i) can essentially be considered an 
approximation to this. 
 
The Bayesian approach is based on there being a space 
3 of possible transition functions for the MDP , and a 
well-defined prior probability density over that space.  
The probability density over the space of possible finite 
MDPs for a known state space of 6  is constructed as 
follows.  If state 6L ∈ has 1 possible succeeding states 
when action for D  is taken, then the transition function 
from that state action pair is a multinomial distribution 
over the outcomes: 
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.  We want a density over this space which is 

closed under sampling from any such multinomial. Martin 
[11] showed that the Dirichlet density has this property: 
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the density is parameterised by the 0>
�� �P  for all M . The 

parameter vector is updated as follows, if a single 
observation of a transition ML �→  is made, then the new 

density is also Dirichlet with 1’’’ +=
�� ��� � PP . The densities 

over the one step transition functions for all other state 
action pairs are independent. The density ( )03 |I for a 

possible transition function 3∈3  for an MDP is 

therefore simply the product of the ( )��SI
r

 over all L and 

D. This density is parameterised by the matrix [ ]	
 �P=0 , 

where of. The additional information from a sequence of 
observations is captured in a count matrix ) .  The 
posterior density given these observations is therefore 
simply parameterised by )00 +′=′′ .  For convenience 
the transformation on 0  due to a single observed 

transition ML 	→  is denoted ( )0
�
 �7 . 

 
The value function in a Markov chain with unknown 
transition probabilities is thus itself a random variable, 
�9~ . Given the usual squared error loss function the 

Bayesian estimator of expected return under the optimal 

policy is the expectation of �9~  

( ) [ ] ( ) ( ) 30_3300 GI999 ����� ∫=Ε= |
~

�����

(T����

where ( )3
9  is the value of L  given the transition 

function 3 .  When evaluated this is transformed into a 
known MDP defined on the information space 60 × : 
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Where ( )0
�� �S  is the marginal expectation of the 

Dirichlet. This shows how the Bayesian estimate of value 
elegantly incorporates the value of future information. 
The optimal solution to the well-known exploration-
exploitation trade-off (problem (i) above) is thus to act 
greedily with respect to the Bayes Q-values. Because the 
solution involves dynamic programming over a tree of 
information states the problem is intractable. The simplest 
approximation to this is the certainty equivalent (CE) 

estimate, constructed by replacing ( )0
�� �7  with 0  in  

(T���. 
 
Approximate approaches to the exploration-exploitation 
trade-off typically circumvent this problem by some 
instantiation of the heuristic ‘‘be optimistic in the face of 
uncertainty’’ [2][9][12][13][14][15]. Most of these 
schemes calculate the uncertainty in some of the estimated 
quantities and add an exploration bonus based on this to a 
CE estimate of �9 . The first of these was Kaelbling’s 

interval estimation method [9]1. This when applied to 
bandit tasks uses the upper bound of an interval estimate 
for the immediate reward associated with each action. The 
action selected is that with the highest upper bound on the 
immediate reward. When applied directly to Q-values in 
multi-stage decision problems this method uses a window 
or a decaying trace of previous Q-values to generate the 
estimate of the upper bound on the Q-values. This, 
however, means that the estimate picks up the non-
stationarity in the Q-values due to their initial bias. 
 
In addition the local exploration bonus is only combined 
with the estimated Q-values for action selection purposes. 
The bonus is not propagated to predecessor states and 
thus the resulting measure is local rather than distal. 
Meuleau and Bourgine [12] created a distal IE measure by 

combining the local IE bonus ( )0
��δ  with the reward so 

that it is propagated to predecessor states in the estimated 
model: 
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where ( )0
$%δ  is the local bonus, ( )γ−1  is a scaling 

factor, and 
&'ξ  is the exploratory value of taking action D  

in state L . The agent then follows a policy which is 

greedy with respect to 
&'ξ . One version of this algorithm 

(variance-based) also uses a window of previous Q values 
to calculate the local exploration bonus; while their worst 
case method uses an upper bound on the underlying 
variance in the return. Some form of asynchronous real 
time dynamic programming (ARTDP) is used to adjust 
the exploration value function on-line. Meuleau’s methods 
have been shown to outperform most current exploration 
techniques on a variety of tasks. 
 
The approach taken by Wiering and Schmidhuber [15] is 
to extend the interval estimation concept in a different 
way. Rather than estimating the variance in the Q-values 
directly and using this to supply an exploration bonus, we 
can apply the optimism heuristic to the transition function 
3 . For each state action pair the upper bound of the 
( ) %1001 α−  confidence interval is calculated for the 

transition probability leading to the successor state with 
the highest estimated value. The other transition 
probabilities are renormalised, and ARTDP is applied to 
the optimistic MDP generated. 
 
There are some minor drawbacks to this method. The 
algorithm uses a Gaussian density to model the 
uncertainty about each transition probability. In 
consequence the sample sizes for each transition have to 
be large before that assumption is justified. Because of 
                                                           
1 Kaelbling’s inference method was model-free but 
Meuleau has introduced a model-based version. Given a 
model-based method it may be possible to define an 
estimate of expected error in the Q-value estimates that is 
not subject to such a bias. Such work would prove an 
interesting extension to Meuleau’s IEDP algorithms 



this Wiering and Schmidhuber initially employ a distal 
counter-based exploration method to acquire a good 
estimated model, and then use their model-based interval 
estimation technique (MBIE) to bias the exploration to 
the most useful (highly rewarding) parts of the state space. 
The algorithm switches to MBIE when the changes over 
time in the value function become small. The result is a 
method that outperforms plain distal counter-based 
exploration both in terms of reward generated during the 
learning period; and in terms of the quality of the policy 
learned. 
 

III. IMPROVING MODEL-BASED INTERVAL ESTIMATION 

 
Since the Dirichlet is the natural conjugate density for 
sampling from a multinomial distribution, it seems 
appealing to employ this, rather than a Gaussian in 
calculating the interval estimates for the one step 
transition probabilities. This allows us to correctly and 
simply incorporate prior knowledge about the transition 
function. The main problem is how to choose the prior 
parameter matrix 0  in the case where we have no prior 
knowledge about 3 . Since we do not know which 
transitions are possible we have two choices. Either we 
can assign a uniform (non-zero) prior to all possible 
transitions; or we can assign a prior to some subset. We 
take the second case to the limit by using a single 
additional terminal state N  to represent possible 
unobserved transitions. A similar idea has been employed 
by Kearns and Singh [10]. In addition by making this state 
highly rewarding [13] we can induce a distal exploration 
value function that will drive the learner toward novel 
state action pairs. 
 
The parameter matrix 0  is thus initially all zero except 
for a single hypothesised transition to the terminal state 
from every state action pair DL,  the prior for which is 

�� �P . Initially �� 59 =  for all states other than N. �9 is set 

to be some upperbound on the value function. Each time 
W  the agent selects an action D in state L that maximises ��ξ  and observes the transition ML �→ . It then updates the 

parameter matrix 0  in the standard way. Because of our 
degenerate prior, each time a novel transition (in terms of 
the prior) is observed this update is not Bayesian since 
observations are incorporated for previously excluded 
hypotheses. Subsequent updates for an observed transition 
follow Bayes rule. Given the new information we then re-
calculate the upper bound of the ( ) %1001 α−  confidence 

interval for the transition probability to the state N for 
each action. The marginal density required for this 
computation is simply a Beta density, always following 

( )∑ ≠ �� a
ij

a
ik m,mBeta . Since we know the single prior 

parameter �P  and also that all other parameters are 

integer we can calculate the upper bounds for a suitable 
parameter set off-line. The other probabilities are then 
renormalised. The result is an optimistic MDP �
	��3 . An 

ARTDP method can then be applied to �
	��3  to revise our 

estimate of the value function. The relevant Bellman 
equation is: 
 

( ) ( ) ( ){ }( )∑ += 
 �
��� 
� � 
� ����� �� ��� ξγξ maxˆ ,
 

(T����

 

where ( )0
��� �� ���S ,ˆ  are the transition probabilities according 

to �
	��3 . 

 
What behaviour should we expect the algorithm to 
exhibit? Initially exploration will be random as ties are 
broken randomly between novel actions in the current 
state. Once all actions have been tried in a state the 
measure will be a mix of a distal counter-based measure, 
and the maximum likelihood value function. Exploration 
will initially be weighted in favour of the former and 
move to the latter as the number of trials of each action in 

a state rises. This means that a high value for �P  will 

cause highly exploratory behaviour for a long period of 
time, whereas a low value will mean a rapid shift to 
exploitation. 
 
This method can be seen as a relation of Kearns and 

Singh’s 3Ε  algorithm in which the learner chooses either 
to identify the model by taking actions that drive it toward 
the unknown state set, or to exploit within the set of 
known states. In our algorithm as soon as a state action 
pair is tried it is considered known, and can thus be used 
in exploitation if it is appealing enough. Alternatively the 
algorithm can be seen as an extension of Wiering and 
Schmidhuber’s method which uses a more appealing 
density to represent uncertainty in the model; and utilises 
this density in exploration control from the outset, 
providing a smooth -- rather than a sudden -- switch from 
distal counter based to MBIE exploration. 
 

IV. EMPIRICAL STUDY 

 
The task chosen to compare algorithms was a 400 state 
MDP maze task, similar to that in [15], shown in Figure. 
The starting state is in the centre of the maze (x,y = 
11,10). There are four actions (N,S,E,W) and transitions 
have a likelihood of 0.8 of succeeding, 0.08 of carrying 
the agent laterally to the intended direction of travel, and 
0.04 of carrying the agent one step in the opposite 
direction. Reward is a deterministic function of state. The 
four corners are terminal states, the top right corner 
generating a reward of 100, and the other three rewards of 
50 each. The maze is filled with penalty fields (-4 or -1) 
and walls. The transition probabilities for actions that lead 
to walls are redirected into the state in which the action 
was taken, but these carry no  penalties. was set in all 
experiments to be 0.95. 
 
Three algorithms were tested: Wiering’s model based 
interval estimation (Wiering’s MBIE); Meuleau’s variance 
based IEDP+ [12]; and our Dirichlet based MBIE. Each 
algorithm was optimised across a range of parameters. 
Each run of an algorithm consisted of approximately 



25000 time steps, and possibly of many trials. When the 
agent reaches a terminal state a new trial is started by 
sending the agent back to the starting state. The last trial 
in each run is allowed to terminate even if it means the 
total run length exceeds 25000 steps. Each algorithm was 
tested for 100 runs. The main algorithm parameters were 
set as shown in Table 1. All algorithms were run using 
Wiering and Schmidhuber’s version of prioritized 
sweeping [15], with the threshold for the priority queue, 

001.0=ε , and the maximum number of backups per step 
20max =8 . 
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We measured the performance of each algorithm 
according to two performance criteria. The first is the 
total reward generated over the length of a run, averaged 
over all 100 runs. This is used following Meuleau [12] 
because it provides a finer discrimination between 
algorithms than the cumulative discounted reward. The 
expected value of the latter measure is that optimised by 
the Bayesian solution, so our performance criterion for 
exploration control of type (i) is different to the classic 
measure. The second performance measure assesses the 
expected regret of a greedy policy generated from the 

final agent model. In order to find the policy for each 
agent we extract the maximum likelihood transition 
model, and apply synchronous value iteration. The set of 
greedy actions is extracted for each state, and a greedy 
policy is created that breaks ties between actions 
randomly. The expected regret of this policy is calculated 
using the known MDP. Finally we present the regret in the 
starting state as a proportion of the value of an optimal 
policy in that state2. This measures performance of 
exploration control of type (ii). We present the results for 
the optimised parameters only for each algorithm on each 
criterion in Table 2, giving the average [  and the sample 
standard deviation V for each measure. Dirichlet based 
MBIE outperforms both other methods for the optimal 
parameter settings on both performance criteria. The 
differences shown are significant at the 0.1% or 1% 
levels, using a 2 tailed t-test, with the partial dominance 
ordering shown in Figure 1(b). 
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1δ = 60 51082 2623 0.047  0.054 IEDP+ 

1δ =1706 -4710 445 0.034 0.039 

β =-1 52684 3298 0.028 0.07 Wiering’s 
MBIE β =-5 11311 654 0.022 0.023 

β =-6 56932 3478 0.078 0.064 Dirichlet 
MBIE β =-4 22708 931 0.01 0.011 
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V. DISCUSSION 

 
We have presented a new heuristic algorithm which on a 
typical task outperforms two of the leading model-based 
explorers, which have themselves been shown to 
outperform almost all other widely used exploration 
techniques. The performance of all the algorithms varies 
significantly across the parameter set. A key question is 
therefore whether limited problem knowledge, e.g. the 
likely density of connections, can be used to guide 
parameter selection. We are testing the current algorithm 
against others on a range of standard tasks and randomly 
generated MDPs to try to establish this. There are a 
number of extensions to be made to the algorithm. First a 
different method could be used to calculate opt3  [8], this 

scheme would have the consequence that the agent could 
be optimistic about transitions to several high value 
neigbouring states. Our next goal, however, is to use the 
method for the construction of optimistic multi-time 
models in hierarchical reinforcement learners in order to 
guide exploration choices between options in Semi-
MDPs.  Finally we hope to  generalise the technique to 
stochastic process models with function approximation. 

                                                           
2 We use the a value of 0 as the baseline. 
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